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If C is an analytic Jordan curve of the z-plane, studies have been made
[1,5,8] of the relative inclusion of the classes H,p(k, ex) and various classes of
degree of approximation on C by polynomials in z, or by polynomials in z
and liz. However, no corresponding study other than [3] seems to have been
made of the relative properties of approximation by polynomials in z and liz
on the one hand and of the series formed on C by the components (parts
containing z or liz only) of such polynomials; the object of the present note
is to make such a study for p > 1. Our methods are in part those of Hardy
and Littlewood in polynomial approximation, of Quade in proof in detail of
some of the Hardy-Littlewood results, and of Zygmund in deepening those
results.!

If r is the unit circumference I z I = 1, and if F(z) is a function of class LP
(p > 1) on r, then there exist [10, p. 151] two unique functionsj(z) and g(z)
of respective classes H p and Gp on r such that

F(z) = j(z) + g(z) (1)

a.e. on r; here H p is the Hardy class offunctionsj(z), analytic interior to r,
with

bounded for 0 < r < 1; and Gp is the corresponding class of functions g(z)
analytic exterior to r, and satisfying g((0) = O. Boundary (Fatou) values of
j(z) and g(z) in LP exist a.e. on r. As a consequence of inequalities due to
M. Riesz, one has also [10, p. 151] the inequalities

(2)
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where C p is a constant depending merely on p. We always suppose
1 <p < 00.

Incidentally, inequalities (2) are almost trivial in the special case p = 2,
for we have the formal developments on r

(3)

and the two sets {z, Z2, z3, ...} and {z-\ Z-2, ... } are not merely orthogonal sets
but are orthogonal to each other on r. Then (1) and (2) hold, for we have
II FI122 = IIfl122 + II g 1122•

If j(z) E H p and if the boundary values (on F) possess a k-th derivative
which satisfies a p-th mean integrated Lipschitz condition of order ex
(0 < ex < 1) or a p-th mean integrated Zygmund condition (ex = 1)

(1T Ijlkl(ei9) + j<k>(eiH2h) _ 2j(k)(eiHh)IP dO :'(; A IhiP,

then we write j(z) E Hik, ex) on r; here and below the constant A depends
only onj(z), k, andp and may change from one inequality to another. These
classes Hik, ex) are by definition [4] invariant under one-to-one conformal
transformation of r and its interior.

The fundamental theorems on polynomial approximation to such and
similar functions are now stated.

THEOREM 1. If a function F(z) is of class U(k, ex) on r, then there exist
polynomials Pn(z, liz) of respective degrees n in z and liz satisfying on r

II F(z) - Piz, llz)llp :'(; Alnk+ct
, o < ex :'(; 1,

and conversely.

Theorem 1 was formulated by Hardy and Littlewood for 0 < ex < 1, and
proved by E. S. Quade; it is due, for the case ex = 1, to A. Zygmund. An
analog [2,4] is

THEOREM 2. A necessary and sufficient condition that a function F(z) be of
class Hp(k, ex) on r is that there exist polynomialsPn(z) in z ofrespective degrees
n satisfying on r

II F(z) - Pn(z)ll", :'(; A/nk+ct
, O<ex:'(;l.

The definition of the class Gik, ex) is analogous to that of Hik, ex) (the
functions must be analytic exterior to r and zero at infinity) and can be
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readily formulated by the reader; the phrase "of class H'J}(k, ex) or G'J}(k, ex)
on r" should not be confusing. The analog of Theorem 2 follows at once.

Under the conditions of Theorem I we may write (I) and Pnez, liz) ==
Pn(z) + qn(z), where the latter two functions are polynomials in z and liz,
respectively, with qn( (0) = O. For by use of Cauchy's integral we have

( )
_ () = _1 f F(t) - PnU, lit) dg z qn Z - 2 . , t,

TTl r t - z
z exterior to r,

Ig(oo) - qn(oo)1 ~ Alnk +rx
;

thus, replacement of g(z) by g(z) - g( (0) and of qn(z) by qn(z) - qn( (0),
with corresponding replacements of fez) and of Pn(z), leaves unchanged the
condition

II F(z) - Piz, Ilz)II'J} ~ Alnk +rx
, z on r.

In the proof of Theorems 3 and 4 we suppose such replacements to be made.
Our main theorem (later to be generalized to other Jordan curves) relates

Theorems 1 and 2:

THEOREM 3. If a function F(z) satisfies the conditions of Theorem I for
P > I, then we may write uniquely F(z) = fez) + g(z) on r, where fez) is of
class H,,,(k, ex) on r, and g(z) is of class Gp(k, ex) on r. Indeed, we may write
for z on r,

Ilf(z) - Pn(z)II'J} ~ Alnk+rx
,

where Pn(z) and qn(z) are the respective components of Pnez, liz). These
inequalities are equivalent to estimates of the degree of approximation on r
by special trigonometric polynomials, namely the power series type and power
series with negative exponents type.

We return to inequalities (2). The classes H'J} and H,,,(k, ex) are additive,
whence by Theorem 1,

with a similar inequality for II g(z) - qn(llz)II'J}' It now follows from
Theorem 2 thatf(z) E Hrlk, ex) on r, and similarly that g(z) E Gp(k, ex) on r.
Theorem 3 is established.

Our purpose henceforth is to extend Theorem 3 from the case of the unit
circle r to that of an arbitrary analytic Jordan curve C. The definitions of the
classes H'J} and G'J} carryover directly (by conformal map) to such a curve C.
A functionf(z), analytic interior [exterior] to C, is of class Hp[G p]on C when
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and only when the integrals M rlr) are bounded, if the interior [exterior] ofC
is mapped onto the interior of r. This condition is satisfied too if the numbers
Mrlr) are bounded for r sufficiently near unity, where fez) belongs then
either to H p or to Gp . For fez) E Gp we require also f( 00) = O.

THEOREM 4. Let C be an arbitrary analytic Jordan curve of the z-plane,
containing 0 in its interior, and let F(z) E LP(k, ex) on C. Then we may write
F(z) = fez) + g(z) on C, where fez) is of class Hp(k, ex) on C, and g(z) is of
class Grlk, ex) on C.

Let w = ep(z) and z = lj;(w) map C and its interior conformally onto
T: I w I = 1 and its interior, with ep(O) = 0; suppose too that the analytic
Jordan curve C' exterior to C is mapped simultaneously onto a circle T'
concentric with F, so that the closed annulus (C', C) is mapped by w = ep(z)
one-to-one and conformally onto the closed annulus (T', T). The function
F[lj;(w)] is of class U(k, ex) on F; hence, by Theorem 3 there exist functions
Fl(w) of class Hp(k, ex) on F and F2(w) of class Gp(k, ex) on F, (F2( (0) = 0)
such that F[lj;(w)] - Fl(w) + F2(w) on r. The function Fl(w) is transformed
into Fl[ep(z)], analytic interior to C, of class Hp(k, ex) on C. The function
Flw), analytic interior to the annulus (F', F), is transformed into the function
F2[ep(z)], analytic interior to the annulus (C, C), of class U(k, ex) on C. In
that latter annulus we may separate F2(w) - F2 [ep(z)] into its two components,
F2[ep(z)] - <Pl(z) + <P2(z) , where <Pl(z) is analytic throughout the interior
of C. The function <P2(z) == F2[ep(z)] - <Pl(z) is analytic throughout the
exterior of C, and has boundary values on C of class LP(k, ex) there. Also,
<Plz) possesses [2, Theorem 5.3] an integral analogous to Mp(r) which is
bounded and monotonic, so <P2(z) E Gpon C, and satisfies <P2( (0) = 0; hence,
<P2(z) is of class Gp(k, ex) on C.

If we now set fez) - Fl[ep(z)] + <Pl(z), g(z) == <P2(z), we have F(z) ==
fez) + g(z) for z on C, where fez) is of class Hrlk, ex) on C and g(z) is of class
Grlk, ex) on C. Theorem 4 is established.

It may be noticed that in the proof of Theorem 4 as given, g(z) == <P2(z) is
uniquely determined fromf(z) and ep(z) by fez) - f[lj;(w)]; so bothf(z) and
g(z) are uniquely determined in Theorem 4, since they are uniquely determined
in the w-plane of Theorem 4 by virtue of Theorem 3.

It is a consequence of the known extensions [2,4] of Theorems 1 and 2
from F to C and of Theorem 4 that corresponding polynomial expansions of
fez) and g(z) in Theorem 4 exist:

THEOREM 5. Under the conditions of Theorem 4, there exist polynomials
Pn(z) and qn(z) of respective degrees n in z and liz such that we have on C,

Ilf(z) - Pn lip ~ Alnk+e<,

II g(z) - qn lip ~ Alnk+e<.
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For p = 00, Theorem 1 extends to yield the same degree of polynomial
approximation if fez) is of class HvCk, a:) on each of a finite number of
mutually exterior analytic Jordan curves. Still broader topological generali
zations [9] are known, for p = 00, and the same methods yield, thanks to
Theorem 5, the following two theorems, relating to approximation by
rational functions [6] and by bounded analytic functions [7]. The proofs
(which are left to the reader) would not be possible without Theorem 5.

THEOREM 6. Let E be a bounded closed set whose boundary J consists of a
finite number of mutually disjoint analytic Jordan curves J j , J = U J j • Let
fez) be analytic in the interior points of E, continuous almost everywhere on J,
and ofclass LP(k, a:), with 0 < a: < 1, on J. In the extendedplane, let the set C
complementary to E consist of the mutually disjoint regions C1 , C2 , ••• , Cv ,

and let a point a:j be assigned in each Cj , j = 1,2,... , v. We choose integers
mn1c > 0 for n = v, v + 1,... , monotonic nondecreasing with n, such that

v

L mnk = n,
k=l

(4)

where the numbers n/mnk are boundedfor all k and n. Then there exist rational
functions Rn(z) ofrespective degrees n whose poles lie in the points a:k counted of
respective multiplicities mnk such that we have for z on E (norm on J)

(5)

Theorem 6 remains true for a: = 1 if the Lipschitz condition on f(k)(Z) is
replaced by a suitable Zygmund condition. A similar remark applies to
Theorems 6, 7 (with the corollary) and 8.

THEOREM 7. Let E, J, C, a:j, andf(z) satisfy the conditions of Theorem 6.
Let D be a region or a finite set of regions of the extended plane containing E
but containing neither on its boundary nor interior to it any point a:k . Then there
exist functions Rn(z), analytic in D, satisfying

Ilf(z) - RnCz)llp :s:; A/nk+a,

I Rn(z)I :s:; A1Rn in D,

where R is a constant.

COROLLARY. Under the conditions of Theorem 6, for every M (> 0) there
exists afunction <1>M(Z), analytic in D, such that

I <1>M(Z)I :s:; M, z in D,

Ilf(z) - <1>M(z)ll" = mM,

where (log M) mlJt(k+~) is bounded as M --* 00.
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In the direction of a converse to Theorem 6 we have

THEOREM 8. Under the conditions of Theorem 6 on E, J, and C, let points

(6)

in C be given, having no limit point on E, with (4) satisfied, k = 1,2,... , v;
n = v, v + 1,... ; L~=l mnk = n. Suppose Riz) is a rationalfunction ofdegree n
with its poles in the n points (6) such that (5) is valid for some f(z) on E. Then
f(z) is of class U'(k, ex) on J.

Theorems 6 and 8 are essentially invariant under conformal transformation
of the extended planes, whereas Theorem 7 and its corollary are of especial
interest because they are even invariant under conformal transformation ofD.
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